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Table 2. Results of  second calculation of  B and s 

[(sin 0)/2]ma X B s Points 

0.60 0.85 1-18 7 
0.65 0.71 1.19 8 
0.70 0.89 1.12 9 

calculated dividing the range of (sin 2 0)/22 into seven, 
eight and nine equidistant zones respectively. A straight 
line was interpolated with the help of the method of 
least squares into each of the diagrams and the values 
for s and B in Table 2 were obtained. 

If the temperature factors are so large that the 
effective interpenetration of the atoms is considerable, 
one should use (18) instead of (17). This is equivalent 
to replacing b in (17), (21), (22) and (23) by b + B. 
Hence, in (21) and (23) the errors resulting from 
thermal interpenetration of the atoms decrease, but the 
errors from series termination increase with b. 

If one wants to find s and I~,~, g = 1, 2, . . .  ,p,  or s 
and 13 it seems appropriate first to determine s and B by 
(21) and (23) and then to refine this result by (15) or 
(16) and finally by (12). 

The author wants to thank Professor M. M. 
Woolfson for many helpful discussions and Drs M. 
Irvin and W. Horst for helpful comments on the manu- 
script. The work was supported by the Deutsche 
Forschungsgemeinschaft. 
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Extrapolative Filtering. 
I. Maximization of Resolution for One-Dimensional Positive Density Functions 
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A one-dimensional formalism based on extrapolative filtering can lead to electron-density maps at more than 
twice the resolution displayed by maps obtained by straightforward Fourier synthesis of structure factors. A 
worked example illustrates the computations for a hypothetical one-dimensional structure. 

1. Introduction 

Norbert Wiener's Extrapolation, Interpolation, and 
Smoothing of  Stationary Time Series (1949) is of for- 
bidding difficulty to most physical scientists. Originally 
published under military classification (Wiener, 1949, 
p. v), its importance was ironically acclaimed as those 
with access termed it 'The Yellow Peril' for the color of 
its binding (Bode & Shannon, 1950). Motivated by the 
need to simplify Wiener's work and relate it in a more 
obvious way to physical problems, Bode & Shannon 

(1950) presented a simplified development of Wiener's 
principal results in terms of electric-circuit theory. 
However helpful their work may have been, it does not 
appear to have provided an immediate impetus to 
scientific applications involving discrete time series, 
possibly because in the case of discrete time it is 
difficult to follow the mathematics intuitively. After 
some years, Enders Robinson (1967) put together an 
elementary account of discrete filters and included 
Bode & Shannon's presentation of Wiener's work in a 
still simpler form adapted to discrete time series. But 
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the problem of satisfying the intuition remained, and as 
late as 1971, Lacoss wrote of a result similar to the one 
presented in this paper, 'Why this might be a reason- 
able estimator . . .  is certainly not obvious'. Although 
extrapolative filtering is novel in crystallography, and 
some crystallographers also may find, as the author did, 
that its results are not intuitively obvious, the math- 
ematical operations themselves are routine in 
crystallographic practice. 

For the present application, however, we are con- 
cerned with extrapolation not in discrete time but in 
sampled reciprocal space in order to obtain high- 
resolution density functions from low-resolution data. 
While such an effort may appear self-contradictory, it 
can succeed through the imposition of a model as in the 
determination of precise position coordinates by least- 
squares refinement of atomic models. It is our goal, 
however, to formulate a general rather than a particular 
model so that one can compute an extrapolated high- 
resolution estimate of a density function using only a 
low-resolution set of structure factors (amplitudes and 
phases) and universally applicable constraints. This is a 
basic need of protein crystallographers - never mind, 
for now, what 'high' and 'low' resolution may m e a n -  
and such an ability could be of great value in working 
any problem for which it is difficult to formulate a 
discrete-atom model. In the main body of the paper we 
shall present some general principles and apply them in 
a simple one-dimensional illustration; the n-dimensional 
problem will be dealt with in another paper. A more 
detailed development is given in the Appendix where 
the presentation has been designed for emphasis of 
some important features of the mathematical back- 
ground and to correspond with the relevant literature. 
There will be no attempt to supply proofs as they can 
be found in the cited literature. 

2. A h i g h - r e s o l u t i o n  e l e c t r o n - d e n s i t y  e s t imator  

A direct approach to our problem would be to find and 
apply a general method of estimating data (structure 
factors, both amplitudes and phases) beyond the 
bounds of an existing data record. This we shall do, but 
in such a way that the final result will correspond to an 
implicit estimation rather than an explicit expansion of 
a data record. Also, in order to impose positivity of 
electron density, we shall assume 

px = Igx 12 > 0: (2.1) 

This assumption certainly requires that an electron- 
density function be positive at every sampled point. But 
more than this, we shall interpret Fh, the Fourier 
transform of Px, to be the (complex) autocorrelation of 
G h, the transform of gx. Even though it will never be 
necessary to evaluate any G h, the entire set exists for 
any real non-negative electron-density function 

(Papoulis, 1973). Consequently a formalism may be 
based on extrapolation of G h to higher orders. If, hypo- 
thetically speaking, values for G k were available as 
data,? then extrapolated values at higher orders could 
be included in computation o fg  x and Igxl 2 would be an 
estimator of electron density of an extrapolated higher 
resolution. 

Suppose G h can be estimated by 
n- - I  

Gh= ~ Gh-l-kAk, (2.2) 
k=o 

which defines A k (as a Wiener-Kolmogorov extra- 
polation filter, see Appendix). Subtraction of (2.2) from 
the identity G k = Gj, gives the related equation 

/1 

eh =- Gh -- Gh : ~ Gh-k Ck, ( 2 . 3 )  

k=0  

which defines C k (as an extrapolation-error filter, see 
Appendix), and 

C0---1, C l = - A 0  . . . .  , C n = - A n _  1. (2.4) 

C k may be evaluated formally by minimization of 

l---~h F ' h - - ~ o G h - k C k 2  ( 2 . 5 )  

with respect to C*; L is the period of both gx and Px. 
The resulting equations are 

1 n 1 
~ ~ Gh-k G~_s Ck : ~ ~" Eh G~_s; 
h k=O h 

Because of (2.1) 

1 
7_, ~. Gh_ k G'~_ s = Fs_ k, (2.7) 

h 
and (2.6) is the same as 

" 1 
~ F s _ k C k = ~  ehG'~_s; s = O ,  1 . . . .  ,n . (2.8)  

k=0  h 

The right-hand side of (2.8) may be evaluated for s > 
0 by substituting (2.2) into (2.3) and minimization of 

n - I  12 
1 ~h Gh ~ Gh_l_kA k , (2.9) 

L 
k=0  

the variance of e h, with respect to As*. The resulting 
equations are 

1 n - l  1 
7_, Z Z Gh-,-kG~-,-s, A k :  ~ Z GhGff-l-s,; 

h k=0  h 

s ' = 0 , 1 , . . . , n - - 1 ;  (2.10) 

S = 0 ,  1,..., n. 
(2.6) 

t Hereafter in this section, h is used to call the reader's attention 
to a complete coefficient set which has no definite bounds; the sub- 
scripts k and s are used to emphasize a specifically delimited set of 
coefficients. 
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o r  

n - 1  

E Fs,-kAk=Fs,+,; s ' = 0 , 1  . . . .  , n - -  1;(2.11) 
k = 0  

which may be rearranged to give 
n - - t  

Fs,+~-- y Fs,_kAk=O; s ' --O,  1 , . . . , n - 1 ;  (2.12) 
k = 0  

and, in view of (2.4), 
n 

Fs_t,C k = 0; s - -  1, 2 , . . . ,  n. (2.13) 
k = 0  

Thus the right-hand side of (2.8) may be written as 

1 
~ e h G~'_, =/~s, (2.14) 

where/~s = 0 when s > 0, and the significance of/~0 is to 
be determined presently. In consequence of (2.14), 
equations (2.8) may be written in matrix notation as 

FC = 13. (2.15) 

Premultiplication by C~, the Hermitian transpose of C, 
yields the Hermitian form 

C ~ F C  -- C]'I~, (2.16) 

and from (2.4) and (2.14) C t~  is readily confirmed to 
be/~0. Karle & Hauptman (1950) have shown that for 
real non-negative p~,, the left-hand side of (2.16) is real 
and non-negative, hence fl0 is real and non-negative. 
Moreover, from (2.3), (2.7), and (2.16) we have 

1 ~'~E 1 C t G t G C ,  (2.17) 
L L 

1 
- C t G t G C  = C * F C ,  ( 2 . 1 8 )  
L 

1 
C t F C  =fl0 = ~, ere, (2.19) 

and/?o is seen to be a~, the variance of cn. Consequen- 
tly, equations (2.8) may be cast in the form 

 Iio l t Ill / C l  = , 

and it is this matrix equation which is to be solved for 
Ck. 

The use for Ck follows closely upon transformation 
of (2.3) according to 

1 1 n 
-L. Z F'h exp{-2rcihx} = ~ ~ ~ Gh_kCkexp{--2~zihx}. 

h h k = 0  

(2.21) 

If on the right-hand side we set h' -- h - k, then drop 
the prime, (2.21) becomes 

1 1 
~ ehexp{--2rcihx } = ~ ~. G n expI-2rcihx} 
h h 

n 

~. C k expI-2~zikx}, (2.22) 
k = 0  

o r  

~x = gx ~ Ct, exp{--2ztikx}. (2.23) 
k = 0  

Let us assume that the error series, t h, is uncorrelated, 
or a series of random errors; in the Appendix this 
intuitively reasonable assumption is seen to be valid. 
Consequently, the autocorrelation of e n is zero every- 
where but at the origin, where it has the value fl0 = tr2. 
It follows that in 

I~x12= ~ ~ e h e~_ h, exp{-2zrih'x , (2.24) 
h 

the right-hand side is non-zero only for h' = 0, and 

1 2 (2 .25)  1&2=Z On. 
It is then clear from (2.23) that 

Igxl 2 ~ Ck expl--2rdkx} = affL, (2.26) 
k = 0  

and, since Px = Igx 12, an obvious rearrangement yields 
as the principal result of this paper, the electron-density 
estimator 

a2nlL (2.27) 
Cpx  = n 2 

It is implicit in the rearrangement of (2.26) that the sum 
over k is non-zero for every x. If this were not the case, 

2 then either Igxl would be infinite for some x, or o n 
would be zero. The latter possibility is easily eliminated 
by use of suitably small values of n in (2.20) 
(Goedkoop, 1950), and the former may be ruled out on 
the grounds that Igxl = (px) tn. 

There are a number of ways to see that Cp x should be 
of higher resolution than Px, the transform of F k. Likely 
the most straightforward is to consider the hypo- 
thetical computation of Px from G h by usual methods. 
Transformation of G k, a bounded set of coefficients, 
would yield gx at limited resolution and Px = Igx 12, 
though non-negative, also would be of limited 
resolution. On the other hand, computation of cp x 
would require explicit use of the complete set, G h. 
Clearly, if it were possible to use all G h explicitly, G n 
would be used to compute not Cpx but an exact gx, and 
Px = Igxl 2 also would be exact. But Cpx can be computed 
by implicit use of the complete set, G h, because it enters 
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the computation only as its autocorrelation, which does 
not need to be calculated for it is experimentally 
accessible in excellent approximation. Even so, Cpx is 
only an estimate of true Px and as n is allowed to 
increase to cause every t h (thus a 2) --, 0 and cpx -~ true 
Px, the right-hand side of (2.27) ~ 0/0 and the whole 
formalism breaks down; this breakdown occurs for n in 
the neighborhood of  N, the number of atoms in a unit 
cell (Goedkoop, 1950). Nevertheless, for n somewhere 
in the neighborhood of N, the formal criterion of 
(relatively) small 02, leads to the expectation that Cpx 
will provide a good high-resolution estimate of  true 
Px, whereas the same structure factors employed in a 
conventional Fourier synthesis would yield a result of 
quite limited resolution. From this point of view, the 
superiority of  resolution in cpx over that in the conven- 
tional estimation of  p~ may be considered as at least 
partially due to implicit use of the complete set G h. The 
related general electron-density model given by (2.1) is 
crucial to our results, but has no apparent direct effect 
upon the resolution in Cpx. It should be noted that the 
implicit estimation referred to in the beginning of  this 
section relates to F k as unmeasured members of  a data  
record may be estimated by conventional transforma- 
tion of Cp~. 

The actual calculations are exceedingly simple. It is 
necessary only to set up the square array of (2.20) for 
any desired n, set 02, --- 1.0, and solve for C k. The result 
is scaled so that C o = 1.0, thus tr~ has its proper value, 
and the desired electron-density estimate follows at 

Table 2. Structure factors;  F h = A h + i n  h 

h A h B h h A h B h 

0 86.97 0.0 17 --7-28 9-71 
1 13.52 -1.78 18 -7.05 --6-36 
2 8.24 6.15 19 2.17 --8.07 
3 2.00 48.24 20 3.91 4.22 
4 32.88 10.82 21 3-07 2.96 
5 --3.69 36.87 22 -6.60 -3.56 
6 -18.40 -0-59 23 7.48 -3.78 
7 3.79 8.22 24 7.43 6.10 
8 -15.88 -8.49 25 --4-43 --0-84 
9 -2.98 25.18 26 -5.52 2.33 

10 -2.63 6.34 27 9-24 -0-74 
11 21.41 --19.22 28 12.17 2.60 
12 -10.29 --0-46 29 -3-94 2-47 
13 -7.56 21.31 30 -1-97 1.56 
14 -0.44 12.58 31 6.64 4.71 
15 5.34 --11.38 32 1.92 11.49 
16 -4.14 3.60 

3. An example 

Consider the artificial one-dimensional structure 
described in Table 1. This structure was constructed to 
contain typical atoms separated by typical interatomic 
distances so that it could serve as a realistic simulation 
of  crystallographic application, insofar as that is 
possible in one dimension. Theoretical structure factors 
were calculated for atoms free of thermal motion and 
they are listed in Table 2; these structure factors were 
used without further modification in all the calculations. 

Table 3. The extrapolation-error f i l ter  derived f r o m  
data at 4.6 A resolution; C h -~- A h + iB h 

For this filter, the error-series variance is try4 = 2-94. 

h A h B h h ,4 h B h 

0 1.000 0.0 8 -0.691 -0.447 
1 -0.416 0.146 9 0.624 0.686 
2 0.068 -0.190 10 0.261 0.168 
3 0.132 -1.417 11 0.558 -0.253 
4 -0.975 0.449 12 0.485 0.155 
5 0.242 -1.155 13 -0.246 0.071 
6 -0.598 0.642 14 -0.087 -0.457 
7 -0.528 1.536 

Table 1. Atomic  position parameters  and interatomic 
distances f o r  a hypothetical one-dimensional structure 

Interatomie Interatomic 
Atom x distance (A) Atom x distance (A) 

C(1) 0.01094 N(8) 0.45312 
1.5 1.3 

0(2) 0.03438 C(9) 0.47344 
1.2 15.1 

C(3) 0.05312 O(10) 0.70938 
1.4 1,3 

N(4) 0.07500 C(I 1) 0.72969 
1.4 3.8 

C(5) 0.09688 N(12) 0.78906 
10.1 1.5 

0(6) "-0.25469 C(13) 0.81250 
11.3 12.7 

C(7) 0.43125 C(1) 1.01094 
1.4 

N(8) 0.45312 Axis length = 64.0 
Fig. 1. Electron density functions based on data at 4.6 A 

resolution. See text for details. 
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Table 4. The extrapolation-error filter derived from 
data at 2-0 A resolution; C h = A h + i B  h 

For this filter, the error-series variance is tr22 = 2.14. 

h A h B h h A h B h 

0 1.000 0"0 17 0.996 0"357 
I --0.542 0"253 18 --0.784 --0.073 
2 0"051 --0.276 19 0" 124 --0"293 
3 0"278 --1.341 20 0"786 0"366 
4 --0.948 0.682 21 --1.180 0"369 
5 0.364 --1.498 22 0.776 --0'689 
6 --0" 194 0"905 23 0.058 0.498 
7 --0-901 1-397 24 --0.262 --0"290 
8 --0.752 --0.998 25 0-417 --0.548 
9 0"935 0"780 26 0" 144 0.568 

10 --0.701 0" 149 27 --0.649 --0.397 
11 1.066 -0.501 28 0.187 0.012 
12 0.303 • 0.894 29 -0.116 0-068 
13 -0.729 0.101 30 -0-205 -0.014 
14 0.577 -0.597 31 0.221 -0-008 
15 -0.099 0.696 32 -0.068 0.137 
16 -0 .330 -0.814 

once from (2.27). The minimum structure factor set 
which resolves 12 of the ideal 13 peaks includes 
structure factors with h in the range 0-14 and cor- 
responds to data at a resolution of 4.6 A (minimum 
interplanar spacing). The values of C k and tr24 for the 
4.6 A data set are given in Table 3. The corresponding 
density functions, p~ and Cpx, were computed on grids 
of 25 6/period and are given in Fig. 1. 

The minimum structure factor set which resolves all 
13 of the ideal 13 peaks includes structure factors with 
h in the range 0-32 and corresponds to data at a 
resolution of 2.0 A. The values of C k and tr22 for the 
2.0 A data set are given in Table 4. The corresponding 
density functions, p~ and Cp~, were computed on grids 
of 256/period and are given in Fig. 2. In Figs. 1 and 2 
the function Cpx is plotted above the zero line with Cpx 
increasing toward the top; from (2.27) it is clear that 

1-4 e/3, t]~] 

LI IvY/ 

Fig. 2. Electron density functions based on data at 2.0 A 
resolution. See text for details. 

Cpx must always be positive. On the other hand, px is 
negative in some regions, so to plot it below the zero 
line and increasing toward the bottom, it was necessary 
to plot absolute values and identify the negative regions 
by shading. In both figures the positions of the 13 
atoms are marked by vertical hash marks across the 
zero line. 

Use of the C series to estimate electron density can 
result in a substantial increase of resolution over that 
provided by straightforward Fourier synthesis of 
structure factors. This is clearly seen in the figures 
which show that resolution in cp~ is greater by a factor 
of ~2-3 than resolution in p~. It should not be 
supposed, however, that resolution can be arbitrarily 
increased by indiscriminant choice of large n in (2.20 
and 2.27). Inclusion of too many terms leads to 
spurious detail and, as Ulrych & Bishop (1975) show, 
even false major maxima. This problem can be seen in 
our example by carefully comparing the profiles for 
C(7), N(8), C(9) in the two figures. Although Fig. 2 is 
based on more than twice as much data as is Fig. 1, in 
Fig. 1 the profiles for C(7), N(8), C(9) have better 
shape and, in fact, are better resolved though their 
positions are somewhat better in Fig. 2. At present, a 
value for n is chosen empirically; a first value of n < N, 
the number of atoms/period, may be increased so long 
as the matrix in (2.20) remains positive definite and 
Cp x does not become unreasonable. 

4. Conclusion 

In the general context of improving electron-density 
maps of large biological molecules, two objectives led 
to the present work. The two, estimation of unmeasured 
data by extrapolation of existing data and electron- 
density constraint by imposition of a general model, are 
somehow related through the dual-basis relationship of 
direct and reciprocal space. However, we have achieved 
the objectives simultaneously without concern for their 
relationship by use of the Wiener-Kolmogorov extra- 
polation theory and inclusion in the formalism of an 
assumption concerning the electron-density function. 
The assumption is that the electron density is the 
squared modulus of some underlying (complex) func- 
tion, and it was employed as its reciprocal-space equi- 
valent, namely that the structure factors are equi- 
spaced samples of an autocorrelation function. It is 
remarkable that the final equations (2.20 and 2.27) do 
not make explicit use of any extrapolation, nor is any 
function underlying the electron density ever calculated, 
although the transform of C k may be proportional to 
the inverse of some such function. 

In the beginning of this paper, reference was made to 
deriving high-resolution results from low-resolution 
data, where 'high' and 'low' remained indefinite terms. 
The example of the preceding section and some of the 
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geophysical literature (e.g. Lacoss, 1971)empirically 
imply that 'high', in terms of resolution, means an 
increase in the range ~2-5 times 'low'. From our 
example of a crystallographic application, it appears 
that 'low' refers to resolutions below true atomic 
resolution on the joint grounds that Fig. 2 shows some 
degradation of peak shape, and ever larger matrices in 
(2.20) are certain to become ill-conditioned. In this 
connection it should be noted that to avoid matrix 
singularity at order n = N + 1 = 14 (Goedkoop, 1950), 
the example was worked with natural rather than 
normalized structure factors. 

There are many other questions which need answer- 
ing but they are of little consequence next to the 
question of the formalism's applicability in n dimen- 
sions. This has yet to be determined and will be the 
subject of another paper. 

Professor Terry W. Spencer of the Texas A&M 
University Department of Geophysics provided invalu- 
able assistance without which this work could not have 
gone forward. This work was supported in part by 
grant GM19455 of the National Institute of General 
Medical Sciences and by a National Institutes of Health 
Biomedical Support Grant administered by the Texas 
A&M University Office of University Research. 

A P P E N D I X  A 

The W K  linear predictor* 

The general problem of predicting (or estimating) data 
not yet measured has been solved (Wiener, 1949) and 
its solution is the central result of the Wiener- 
Kolmogorov (WK, hereafter) prediction theory for 
stationary series. The key to practical application of the 
WK theory lies in the term 'stationary,' which, in 
reference to time series, means that the statistical 
properties of the series do not change with time. And if 
a series is stationary and of finite mean-square 
modulus, then its autocorrelation will exist and will be a 
function of definite finite value (Wiener, 1949, § 0.8). 
Here the crystallographic application comes into view, 
for we shall not inquire concerning the stationarity of 
any series, but where there exists a definite autocor- 
relation function, the formalism of the WK prediction 
theory is assumed to be applicable. For ease of 
exposition, the remainder of this section, and most of 
the next, will deal with time series. 

Consider the discrete time series x t known for past 
time. Wiener's general problem is to find a~ such that 

* There appears to be a controversy concerning the attribution of 
prediction theory to either Wiener or Kolmogorov. Wiener (1949, 
p. 59) asserted that their work was parallel but independent and, in 
agreement with this, prediction theory is attributed to both men in 
the present work, though only Wiener's work is cited. 

the expression (Wiener, 1949, § 2.6) 

1 N oo 12 
lim ~ Xt+ a -  ~ Xt_sas(a)[ (A.1) 

n ,oo2N + 1 t=-N s=0 

is a minimum. In (A. 1), as(~ 0 is the WK linear predictor 
(extrapolation filter) for prediction span (t, that is, given 
the values of x up to time t, there is a least-squares 
optimum predicted value for xt+,~ and it is given by the 
inner sum of (A. 1). Expression (A. 1) is only of formal 
value for there is little purpose to predicting values 
already known, but the concept is employed as follows. 
Assume x t to be a real-valued stationary series (here- 
after we shall assume all series to be stationary). 
Straightforward minimization of the expectation in 
time, 

I = E x t + , , -  s~=o xt_ s as((~) , (A.2) 

with respect to the operator coefficients, as(a), gives the 
equations 

oo 

as(,)tp,_ s = tp,+,,, r =  0, 1, 2 . . . .  ; (A.3) 
S = 0  

where (0 is the autocorrelation of x t. Equations (A.3) 
could be solved by ordinary methods to any practicable 
order of approximation to provide values for as(c 0 and 
a formally satisfactory solution to the simple prediction 
problem. Wiener's book-length treatment of the predic- 
tion problem includes the details necessary for math- 
ematical rigor, but for the sake of insight we shall 
follow the more transparent development of Robinson 
(1967) as based on the work of Bode & Shannon 
(1950). Nevertheless, one outstanding feature of the 
WK linear predictor, or extrapolation filter, is clear in 
(A.3). An extrapolation filter depends neither on the 
choice of origin nor on explicit values for the time 
series, but only on its autocorrelation function. 

A well behaved time series certainly may be written 
as a convolution of the type 

cx3 

x t =  ~ b set_ s, (A.4) 
S = - - O 0  

where e is a white noise series, a series which by 
definition possesses an autocorrelation function that is 
non-zero only at the origin. The Fourier transform of 
such an autocorrelation function is a positive constant, 
say 10"12. In any case X ( f ) ,  the Fourier transform of 
the physically observed series x t, surely exists, and just 
as surely so does 

B ( f ) =  X ( f ) e x p { - - [ i O ( f )  + ½ In I0"1z]}, (A.5) 

where we require that O(f) ,  though arbitrary, be real 
and finite. Rearrangement of (A.5) and subsequent 
transformation then gives (A.4). An obvious but 
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important consequence of (A.5) is that 

IX(f)l 2= lal 2 IB(f)l 2. (A.6) 

Thus it is clear that of the many ways to represent x 
according to (A.4), for each case the autocorrelation 
of b must equal the autocorrelation of x except for a 
constant factor. 

Since the WK extrapolation filter depends only on 
the autocorrelation of x, and b must have the same 
autocorrelation, except for a constant factor, we 
anticipate that any extrapolation will depend on b, and 
e will contain the information which distinguishes x 
from every other series possessing the same autocor- 
relation. To emphasize the correspondence between x 
and e, it is desirable to rewrite (A.4) in the form 

t 

x t =  ~. esbt_ s, (,4.7) 
S = - - O 0  

if possible. If b e is a causal or one-sided function, that 
is, if b t = 0 when t < 0, then (A.7) is not different from 
(A.4). So the problem in writing (A.7) is to determine 
the conditions under which phase angles can be found 
and assigned to IB(f)l such that B ( f )  is the transform 
of a causal or one-sided function. Satisfaction of the 
Paley-Wiener condition (Papoulis, 1962, § 10.5)is 
necessary and sufficient, which for our purposes means 
it is required that 

IB(f)l > 0. (A.8) 

If (A.8) is satisfied, then an admissible statement of x at 
time t + a is 

t + a  

xt+,~= Y esbt+,~_ s, (A.9) 
S = - - O 0  

and upon distribution of terms, 

t t + a  

Xt+ot = ~. esbt+,~_s+ ~ esbt+,~_ s. (,4.10) 
s = - - o o  s = t +  I 

Evidently, the deconvolution of x implied in (`4.7) is the 
crucial step in solving the prediction (extrapolation) 
problem. For, given the series t t and b t, trivial 
manipulation can yield the first summation of (A.10) 
which is the desired estimate of xt+,~; the second sum of 
(,4.10) is the unpredictable part of xe+ ~ and is to be 
ignored. 

Because future values of x e are unknown, el must be 
computed using an equation analogous to (A.7), 
namely, 

t 

Z XS hinv~t-s = '~, ,  (A.11) 
S= --00 

where b~ nv is the Fourier transform of l i B ( f ) .  Just as in 
(A.7) b e must be a one-sided function, so must b~ "v be a 
one-sided function and with this requirement b t is 
uniquely specified. To see this, let us at first identify 

exp{2mf} with z, then write the z-transform of bt, 
O(3 

B(z)=  Z bt zt, (A.12) 
t=--OO 

which is immediately recognizable as a Laurent series 
about the origin of the complex plane if the constraint 
I z I = 1 is removed. It is assumed that b t is well behaved 
in the sense that its Fourier transform, B ( f ) ,  is given by 
a convergent series; consequently, the region of 
convergence of the series (A.12) includes at least the 
unit circle. Moreover, bt must be a one-sided function; 
so B(z)  is given by an ordinary power series, 

oo 

B(z)= y btz e, (,4.13) 
t=0 

and its absolute convergence within the unit circle is 
assured (Churchill, 1960). A similar analysis can be 
applied to 1/B(z) to demonstrate that it too must be 
free of singularities within the unit circle. Now if both 
B(z)  and 1/B(z) are free of singularities within the unit 
circle, and both satisfy the Paley-Wiener condition, 
then both must be free of zeros and singularities on and 
within the unit circle. Such a function is a 'minimum- 
phase function' and, apart from an arbitrary constant 
factor, is uniquely determined by its amplitude (Bode & 
Shannon, 1950; Robinson, 1967; Papoulis, 1962, § 
10.3). 

It remains to compute the minimum phase function, 
B(z), and there are a number of ways to perform this 
computation. For the finite case Fej6r's (1915) fac- 
torization is given by Wiener (1949, § 2.6) and 
developed in detail by Robinson (1967). Although this 
factorization is not practical for crystallographic 
applications it is conceptually straightforward. Con- 
sider B*(1/z)B(z) ,  which, on the unit circle, differs from 
I X ( f ) l  2 only by a constant factor. If there are N + 1 
terms in the summation of (,4.13), then we may write 

B ( z ) = ( a t  + fll z) (-a2 + f l 2 z ) . . .  (a N + flNz), (A.14) 

B*(1/z)  = (a* + ~ll z - l  * )("2 + ~ z- l )  "'" ('~*~ + ~ z - ' ) ,  
(,4.15) 

zUB*(1 / z )B(z )=  (a, + fl, z)(fl~ 1 +a*~z)(a 2 + f12 z) 

(fl~2 + a ~' z) . . .  (a s + flu z)(~u + a* z). (A. 16) 

Now (A.16) is a proper polynomial and may be set 
equal to zero whereupon it is clear that its roots are in 
pairs, 

One member of (A. 17) lies inside the unit circle and the 
other lies outside the unit circle. The desired minimum- 
phase function, B(z),  is obtained by forming the 
product of the N factors from the right-hand side of 
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(A.16) which correspond to roots outside the unit 
circle. 

This factorization to obtain the minimum-phase 
function, B(z), completes the solution of the WK extra- 
polation problem except for routine manipulations. 
Given the physically observed (finite) time series, x t, 
Fourier transformation yields X ( f )  and, of course, 
IX(f ) [  2, which may differ from IB(f)l  2 by a constant 
factor. The foregoing factorization yields, on the unit 
circle, B ( f )  such that its inverse l i B ( f )  exists and is 
well behaved. Thus the series b t and 8 t can be calculated 
by transformation of B ( f )  and X ( f ) / B ( f ) ,  and the first 
sum of (A.10) can be formed to give the desired 
estimate of xt+,~. Alternatively, at(a), the extrapolation 
filter itself, could be calculated from its transform, A(a, 
f )  = B ' ( a , f ) / B ( f ) .  B ' ( a , f )  is the transform of the one- 
sided function b~, where b~ = b,~, b~ = b~+l, . . . .  

A P P E N D I X  B 

The extrapolation-error filter 

The development of the preceding section is useful in 
understanding the nature of an extrapolation filter. But 
the formalism requires that we achieve our goal by 
explicit estimation of future (unmeasured) data, an 
unnecessarily cumbersome procedure. It turns out, for 
our purposes, that it is more efficient to use an extra- 
polation-error filter than an extrapolation filter. Here 
we shall follow Peacock & Treitel's (1969) matrix 
formulation and development of the extrapolation-error 
filter. 

But first let us be assured that it is reasonable to work 
with filters of finite length. In the Fej6r factorization of 
the preceding section it was assumed that  the series b t 
was finite and had N + 1 members. Whether or not N is 
exceedingly large from an experimental point of view is 
of no consequence. For if B(z) is a minimum-phase 
function, then b t is minimum delay and for any different 
b~ corresponding to B'(z) with one or more of its roots 
inside the unit circle [refer to (A. 14-A. 17)], 

M M 

Z Ibt 12~- ~. Ib~12; M = 0 ,  1 . . . .  ,N.  (B.1) 
t = 0  t = 0  

Robinson (1967) discusses this remarkable fact in 
detail and Oppenheim & Schafer (1975) give an out- 
line for its proof. The minimum-phase function, B(z), is 
unique not only as it was derived to have all its roots 
outside the unit circle, but also in this sense. That  of all 
possible sequences which yield the known values 
IB(f) l  z, the minimum-delay sequence b t, whose z- 
transform is the minimum-phase function B(z), will give 
the best possible estimate in the mean of I B ( f ) l  z after 
truncation at any given t = M < N. So whatever the 
practical limitations of length may be, optimum extra- 
polation is ensured by use of minimum-delay sequences 

for filters. Of course this does not mean that short filters 
are better than long ones, or even that they are useful at 
all. But it does mean that a well chosen short filter may 
be very much better than a poorly chosen long one, and 
that there is a best filter of given length. Furthermore,  in 
the context of data records, it is most improbable that 
any experimental series is minimum delay, so in view of 
(A.6 & B.1) it is probable that a good estimate of 
IB ( f )  l z will require significantly fewer terms than make 
up I X ( f ) l  2. 

If equation (A.2) is rewritten with n -- 1 as the upper 
limit of s, minimization with respect to the filter 
elements again gives (A.3) but with the limit on s and r 
= 0, 1 , . . . ,  n - 1. When in addition ct = 1, we have 

= 

L~n- 1 (Pn-2 "" (P01 n-1 L(0n_] 

(8.2) 

which is the same as Peacock & Treitel's (1969) 
equation (9). Now if a t is the unit extrapolation filter 
such that the estimate ofxt+ 1 is 

n - - 1  

-~t+l = ~ Xt-sas~Xt+l, 
s=O 

(B.3) 

then the (unit) extrapolation-error filter is Yt, where 

n 

et = x t -  :~t = Y~ x t - s  ~'~ (B.4) 
$ = 0  

and 

y0 = 1, yl=--ao,  y 2 = - - a l  . . . . .  yn=--an_v (B.5) 

Apart  from the arbitrary scale of (A.11), equations 
(A.11) and (B.4) are completely analogous. Moreover, 
because in (A. 11) b~ "v must be minimum delay, Yt also 
must be minimum delay, or at least very nearly so. 
Thus, Yt is in the mean the best n-term approximation of  
b~ nv, apart  from a constant factor. Let it be observed 
that this may not be the case if the square matrix in 
(B.2) is not positive definite, or Yt is not exactly 
minimum delay, or the Fourier transform of ~0 t is not 
greater than zero at every point. 

Rather than find the extrapolation-error filter by 
(B.2) and (B.5), Peacock & Treitel (1969) showed that 
it could be obtained directly from a simple modification 
of (B.2). Their modification is in two steps. First, 
subtract the right-hand side of (B.2) from both sides. 
Second, add to the system the equation 

n 

X G Ys = ft. (B.6) 
S = 0  
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Now, instead of (B.2) which gives the unit extra- 
polation filter, we have 

[i ° 1[ [I] <P, ~'o: ~ : - ,  = , (B.7) 

n~n-I ' '  q~O1 l~n 
which gives the (unit) extrapolation-error filter. An 
interpretation of (B.6) can be found by multiplying both 
sides of (B.4) by xt+ p and determining the expectation 
in time as follows. 

E{Xt+p$t}----'E{ ~s=O Xt+pXt-sYs}" (B.8) 

The right-hand side of (B.8) is 
n 

(Pp+s)'s (B.9) 
s=O 

where we wish to consider only the case p = 0. Let us 
assume that Yt is minimum delay, or equivalently, that 
its Fourier transform is minimum phase. Then ~t nv 
exists, and (B.4) can be'rearranged to give xt+ p and the 
left-hand side of (B.8) can be approximated by 

E{s=~oet+p_s~isnVet}. (B.I0) 

It is readily verified that )~0 "v = 1, so when p = 0 (B. 10) 
becomes 

E{Et~t} + E{~t_lF, t?~ v} -t-...E{Et_nEt)llnnV}. (B.11) 

It is clear that the only non-zero term in (B. 11) is the 
first and it is a 2, the variance of 8 t as given by (B.4). 

2 is considered in detail by The equality of fl and a~ 
McDonough (1974). In the geophysical literature this 
quantity is also referred to as 'prediction error' (Burg, 
1972) and 'prediction-error power' (Ulrych & Bishop, 
1975). 

Equation (B.4) can be transformed to give 
1 oo 

~. et exp{-2zfftf } 
t=-oo 

1 oo 

= ~ Y Y, Xt-s Ys exp{--21fftf}, (B.12) 
t=-oo s=O 

where f is in fractions of its period, L. If on the right- 
hand side we set t' = t - s, then drop the prime, (B. 12) 
becomes 

1 oo 
~" etexp{--27~itf} 

t= --o0 
1 oO n 

= ~ Y xtexp{--Z~itf} Y 7~ exp{--Z~/sf}, (B.13) 
t=--oo s=0 

o r  
n 

~(f) = X ( f )  Z 7s exp{--2zr/sf}. (B.14) 
S=0 

Because I~(f)l 2 is the transform of the autocorrelation 
of e t, 

'~(f)12= a2n/L = IX(f)121 s=0 ~" 7seXp{--2zffsf}12' (B.15) 

and 
o~nlL 

I X ( f ) ] 2  : . (B. 16) 

'seXp{-E sf }12 
Equation (B.16) expresses Burg's maximum-entropy 
spectral-density estimate for x t (Lacoss, 1971) and is 
identical to the spectral-density estimate for x t modeled 
as an order-n autoregressive process (McDonough, 
1974). The correspondence and distinctives of extra- 
polative-filtering, autoregressive, maximum-entropy, 
and even maximum-likelihood calculations are dis- 
cussed by Ulrych & Bishop (1975); at present, their 
meaning and significance in crystallographic ap- 
plications is not certain. 

It is clear, however, that with the assumption given 
by (2.1), and upon renaming variables as 

X t --~ Gh, 
~t "-~ Fk, 
X ( f )  -+ gx, 
a t ~ Ak, 
~', --'Ck; 

then (B.16) becomes the same as (2.27), the principal 
result of this paper. 
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